
AVR micro-controller programming

with

PHOENIX-MDK

July 9, 2009

Chapter 1

Getting Started

The majority of computer systems in use today are embedded in other machin-
ery, such as automobiles, telephones, appliances, and peripherals for computer
systems. Most of them have minimal processing and memory requirements and
can be implemented using micro-controllers. A microcontroller is a small com-
puter on a single integrated circuit consisting of a CPU combined with program
and data memory, periferals like analog to digital converters, timers, serial I/O
etc. Intel 8051, Atmel AVR, PIC etc. are popular microcontroller series avail-
able in the market. This document is about programming Atmel ATmega16
micro-controller in C language. The reason for choosing the AVR series is the
availability of AVR GCC compiler which is under GNU General public license.
ATmega16 is chosen due to its simple pinouts where the Input/Output ports
are organized in a clean manner and the availability of it in DIP package, that
can be mounted in a socket.

The ATmega16 has 16K bytes of Flash Program, 512 bytes EEPROM and
1K byte SRAM. Three Timer/Counters, Internal and External Interrupts, a
serial programmable USART, a byte oriented Two-wire Serial Interface, an 8-
channel, 10-bit ADC and an SPI serial port are some of the periferal devices on
the chip. In this chapter, we will describe the minimal hardware and software
to get started. All the example �les and batch �les given in this document can
be downloaded from the Phoenix website.

1.1 The minimum hardware

A pinout of ATmega16 is shown in �gure 1.1(a). AVR series micro-controllers
support serial program loading. The minimum circuit to required to start ex-
perimenting with Atmega16 is shown in �gure 1.2. A �ve pin header is used
to connect the Ground, Reset and the three serial program loading pins to the

1

CHAPTER 1. GETTING STARTED 2

Figure 1.1: (a)Atmega16 pinout.

6
7
8
9
11 A

T
m

eg
a1

6

P
C

 P
ar

al
le

l P
or

t

MOSI
MISO
SCK

RESET
GND

2
11
1

16
18

1
PB0

5V

10

Figure 1.2: The minimum circuit required to get started.

CHAPTER 1. GETTING STARTED 3

parallel port of a PC1.
An LED is connected from Bit 0 of Port B to run a blinking LED test

program. You need a 5V power supply on pin VCC. The Analog supply input
(AVCC, pin 30) is connected to the Digital supply input (VCC, pin 10) through
a 10Ω resistor. Decoupling capacitors (0.1µF) are connected from both power
supply pins to ground.

1.2 Getting the Software

We need the following software packages to develop programs from AVR series
of micro-controllers:

• gcc-avr Gnu C Compiler for AVR

• binutils-avr Binary utilities (linker, assembler, etc.) for AVR

• avr-libc Basic C-library for AVR

• gdb-avr Gnu debugger for AVR

• uisp, a simple command line tool to upload compiled hex code into the
target hardware

On a debian system they can be installed using the commands

apt-get install gcc-avr

apt-get install avr-libc

apt-get install gdb-avr

apt-get install uisp

Debian 5 (Lenny) has all of them on the distribution DVDs. You can also get
it from the Debian repository.

On Fedora use the following commands to install them from the network

yum install avr-gcc
yum install avr-binutils

yum install avr-libc

yum install avr-gdb

yum install uisp

You can also install them by downloading the RPM �les. Visit the sites rpm�nd.net
or rpm.pbone.net and use the search options to locate the packages.

For Windows, you can download the entire package from http://sourceforge.net/projects/winavr/�les/
as an executable �le and install it.

1You can also do the program loading using the RS232 port or using a dedicated program-

mer, we have just chosen the parallel port option.

CHAPTER 1. GETTING STARTED 4

1.3 Compilation and Program Loading

Programming is done is C language and compiled using the AVRGCC compiler.
An Intel HEX format �le is generated and it is uploaded to the micro-controller
using the program uisp. Since the compilation and uploading commands require
a lot of command line options, we put them in two batch �les.

The batch �le compile for compiling the source is shown below. This batch
�le also geneartes a map �le and listing �le, which may not be required most of
the time.

avr-gcc -Wall -O2 -mmcu=atmega16 -Wl,-Map, $1.map -o $1 $1.c
avr-objcopy -j .text -j .data -O ihex $1 $1.hex
avr-objdump -S $1 > $1.lst

The batch upload for loading the program to the micro-controller through the
parallel port is shown below. It erases the existing code from the �ash memory,
loads the new program and sets the lock bits.

uisp -dprog=dapa -dpart=atmega16 -dlpt=0x378 �erase
uisp �verify -dprog=dapa -dpart=atmega16 -dlpt=0x378 �upload if=$1.hex
uisp -dprog=dapa -dpart=atmega16 -dlpt=0x378 �wr_lock=0xfe

1.4 Digital Input/Output

Atmega16 has 32 pins con�gured as four ports named A, B, C and D, each 8 bit
wide. Their direction and data transfer can be controlled by using the registers
DDRX, PORTX and PINX (where X stands for A, B, C or D). The AVRGCC
compiler allows us to access the registers just like normal variables. For example,
the statement DDRB = 15 , writes the number 15 to register DDRB.

• DDRX : Every pin of an I/O port can be con�gured as Input or Output
using the Data Direction registers DDRX. To con�gure a pin as output, set
the corresponding bit in DDRX. For example, DDRA = 3 will con�gure
Bit 0 and Bit 1 of Port A as outputs.

• PORTX : For pins that are con�gured as ouputs, assigning a value to
PORTX will set that data on them. For pins that are con�gured as inputs,
setting the bits in PORTX will enable the corresponding internal pullup
resistor.

• PINX : For the pins con�gured as inputs, PINX will read the status of
voltage level at the pins. For pins that are con�gured as outputs, PINX
will return the data written to PORTX.

The operations described above can be understood easily with some examples.
In our hardware, we have an LED connected to Bit 0 of Port B. The program
copy.c reads the voltage level at PA0 (Pin 0 of Port A) and sets the same on
PB0, where we have connected the LED. We will pull up PA0 to 5V internally
and it will go LOW only when you connect it to ground using a piece of wire.

CHAPTER 1. GETTING STARTED 5

Example copy.c

#include <avr/io.h>

int main (void)

{

uint8_t val;

DDRA = 0; // Port A as Input

DDRB = 1; // Pin 0 of Port B as output

for(;;)

PORTB = PINA;

}

Compile and upload copy.c using the commands:

$./compile copy

$./upload copy

The LED should start glowing after uploading the program. LED will be o�
when you connect PA0 to ground. You may rewrite the program so that the
LED may be controlled by some other bit con�gured as input.

The simple program given above has certain drawbacks. It changes PORTB
as a whole instead of acting on Bit 0 alone. Suppose we had something else
connected to the other pins of Port B, they also will be a�ected by PORTB =
PINA. Here it does not make much di�erence since we are not using the other
bits of Port B. If we want to preserve the status of other 7 bits of Port B , we
may modify the for loop as

stat = PINA & 1; # get only PA0

val = PORTB; # current value of Port B
val &= ~1; # clear Bit 0 only

val |= stat; # Set it if PA0 is HIGH
PORTB = val; # change Port B

The code fragment shown above uses the Bitwise AND, XOR and OR operators.
Another simple program blink.c that makes pin PB0 HIGH and LOW in a

closed loop so that the LED connected to it will blink, is listed below.

Example blink.c

#include <avr/io.h>

void delay (uint16_t k)

{

volatile uint16_t x = k;

while (x) --x;

}

int main (void)

{

DDRB = 1; // Data Direction Register

for(;;)

CHAPTER 1. GETTING STARTED 6

{

PORTB = 1;

delay(30000);

PORTA = 0;

delay(30000);

}

}

If everything goes �ne, you should see the LED blinking. The delay routine is
required to make the switching slow, else we will not be able to see it. You
can remove the delay and watch the high frequency pulses on PB1 using an
oscilloscope.

1.5 Selecting a Clock Source

A micro-controller require a clock source for its operation. ATmega16 is set
to use the internal RC oscillator at 1 MHz from the factory. That was good
enough for our example programs but many applications may require an external
crystal and higher frequency clocks. For ATmega16, there are several internal
and external clock options that can be selected by programming the fuse bits
(can be done using the program uisp). The fuse bytes used for selecting the
clock source and frequency are shown in �gure 1.3. The factory setting of Fuse
Low Byte is 0xE1. When used with an external crystal, we set it to 0xEF.

The batch �le set_fuse sets the fuses for external crystal oscillator. DO NOT

run this program without changing the Fuse Low Byte from 0xEF , if there is

no crystal connected between pins 12 and 13. The JTAG feature is disabled so
that the pins PC2 to PC5 can be used for normal Digital Input/Output.

echo "Setting fuses for ATmega16: External Crystal, disable JTAG"

uisp -dprog=dapa -dpart=atmega16 -dlpt=0x378 --erase

uisp -dprog=dapa -dpart=atmega16 -dlpt=0x378 --wr_fuse_l=0xef

uisp -dprog=dapa -dpart=atmega16 -dlpt=0x378 --wr_fuse_h=0xd9

uisp -dprog=dapa -dpart=atmega16 -dlpt=0x378 --rd_fuses

For more details on fuse bit setting refer to the ATmega16 manual. It is also
possible to set the lock bits so that the program cannot be erased until the lock
bits are reset.

CHAPTER 1. GETTING STARTED 7

Figure 1.3: The LOW and HIGH fuse Bytes are shown in the �rst two tables.
The third shows how to select the clock source using them. Table 4 shows how
to select the frequency if the internal RC oscillator option is used.

Chapter 2

The Phoenix-MDK

The Phoenix Micro-controller Development KIT makes it easy to start devel-
oping code on ATmega16. The hardware makes all the I/O pins available on
sockets. The built-in LCD display with software support makes development
faster. Functions are written to access most of the periferal devices so that the
beginner need not get in to the register details of them.

2.1 The Hardware

The basic hardware board has a socket mounted ATmega16, a 5V DC regulator
circuit that accepts 9V unregulated DC. All the 32 I/O pins are labelled and
available on sockets. A 6 pin connector is used for program uploading through
the PC parallel port. A 16 character LCD display can be plugged in to a socket
that is wired to PORT C. The hardware schematic of the basic board is shown
in �gure 2.1. The versions with RS232 / USB interfaces to the PC will be
described later.

2.2 The software

On the software side Phoenix-MDK provides you several functions that can be
used to access various on-chip periferals of ATmega16 and the 16 character LCD
display. To make the source code visible to the user, they are not compiled as a
library. The functions are provided as source �les that can be included into your
own code. The source �les providing the library functions are kept along with
the example programs. To distinguish them, the names of the library �les start
with a pmdk_ , for example the LCD related functions are inside pmdk_lcd.c .

Reading the working source code along with the ATmega16 manual is a good
way to understand how the periferals are programmed. The example program
hello.c listed below shows how to use it.

Example hello.c

8

CHAPTER 2. THE PHOENIX-MDK 9

Figure 2.1: Circuit of the PMDK board.

CHAPTER 2. THE PHOENIX-MDK 10

#include "pmdk_lcd.c"

int main()

{

lcd_init();

lcd_put_string("Hello World");

}

The �le pmdk_lcd.c provides the following functions :

• lcd_init() : Initializes the LCD display, must be called once in the begin-
ning

• lcd_clear() : Clears the display

• lcd_put_char(char ch) : Outputs a single character to the LCD display

• lcd_put_string(char* s) : Displays a string to the LCD

• lcd_put_byte(uint8_t i) : Diplays an 8 bit unsigned integer

• lcd_put_int(uint16_t i) : Displays a 16 bit unsigned integer

2.3 ATmega16 Periferals

2.3.1 Analog to Digital Converter

ATmega16 has eight channels of ADC inputs with 10 bit resolution. The ADC
converts an analog input voltage to a 10-bit digital value through successive
approximation. The minimum value represents GND and the maximum value
represents the voltage on the AREF pin minus 1 LSB. Optionally, AVCC or an
internal 2.56V reference voltage may be connected to the AREF pin by writing
to the REFSn bits in the ADMUX Register. The internal voltage reference
may thus be decoupled by an external capacitor at the AREF pin to improve
noise immunity. The ADC operation is controlled by programming the registers
ADMUX and ADCSRA. The data is read from ADCH and ADCL.

The PMDK library provides the following functions to use the ADC:

1. adc_enable() : Enables the ADC

2. adc_disable() : Disables the ADC

3. adc_set_ref(ref) : Select the reference, where ref is REF_EXT is an ex-
ternal voltage is applied to the AVREF pin, REF_INT to use the internal
2.56 V reference and REF_AVCC to connect the AVCC supply internally
to AVREF.

4. read_adc(ch) : Converts the voltage on channel ch and returns it in a 16
bit number.

CHAPTER 2. THE PHOENIX-MDK 11

The example program adc.c , reads an ADC input and display the result on the
LCD.

Example adc.c

#include "pmdk_lcd.c"

#include "pmdk_adc.c"

main()

{

uint16_t data;

lcd_init();

adc_enable();

data = read_adc(0);

lcd_put_int(data);

}

2.3.2 Timer/Counters

ATmega16 has two numbers of 8 bit counter/timers and one 16 bit timer counter.
They can be operated in di�erent modes. For details, refer to the manual. In
this section we have the following functions that utilizes the Counter/Timers.
They are all written for a CPU clock requency of 8 MHz and the accuracy
depends on the accuracy of the crystal used.

1. set_frequency(freq) : Generates a square wave on PD7 (OC2)

2. set_voltage(dac) : Generates a 31.25 KHz square wave on PD7(OC2)
whose dutycycle is decided by the 8 bit unsigned integer dac. Filtering
this Pulse Width Modulated wave will result in a DC ranging from to 5V.

3. measure_frequency() : Returns the frequency of a square wave connected
to PB0 (T0) in Hertz. This function counts the number of pulses for one
second.

Connect PD7 to PB0 and upload the program freq.c to read the frequency on
the LCD display.

#include "pmdk_timer.c"

#include "pmdk_adc.c"

#include "pmdk_lcd.c"

int main()

{

uint16_t fr;

lcd_init();

set_frequency(500); // Generate square wave on PD7 (OC2)

fr = measure_frequency(); // Measure on pin PB0

lcd_put_int(fr);

}

CHAPTER 2. THE PHOENIX-MDK 12

2.3.3 Simpli�ed Digital I/O

On the Phoenix-MDK board, all the 32 I/O pins are available on sockets and
are grouped into Digital I/O pins and Analog Input pins. The Digital I/O pins
are numbered from 0 to 20. The three pins (SCK, MISO and MOSI) used for
program loading are excluded. Simple functions are written to cotrol/monitor
these pins, and are listed below.

1. make_pin_input(pin) : value of pin from 0 to 20. Con�gure it as input.

2. make_pin_output(pin) : Con�gure as output.

3. enable_pullup(pin) : Enable the internal pullup if the pin is input.

4. disable_pullup(pin) : Disable the internal pullup on the pin.

5. set_high(pin) : Sets a HIGH on the pin, if it is an output pin.

6. set_low(pin) : Sets a LOW on the pin.

7. read_pin(pin) : Returns the status on the input pin, 0 or 1 depending on
the voltage level.

The example program dio.c given below sets the pin Digital I/O pin number 13
to HIGH.

Example dio.c

#include "pmdk_digital.c"

main()

{

make_pin_output(13);

set_high(13);

}

2.4 RS232 Serial Communication to PC

ATmega16 supports a Universal Synchronous and Asynchronous serial Receiver
and Transmitter (USART), that can be used for communicating to a PC through
the RS232 port of the PC. The HIGH and LOW logic levels used in RS232
communications are around -9V and +9V. We need to use a level shifter circuit
to connect the 0 to 5V USART signals to the RS232 port of the PC. The PMDK-
Serial board incorporates this circuits and has a 9 pin connecter compatible with
the PC serial port. The circuit schematic is shown in �gure 2.2.

The following functions are available for communicating to the PC. On
the PC side, we use a simple Python program to communicate to the micro-
controller. You need to install Python interpreter and the python-serial module
on the PC for this to work.

CHAPTER 2. THE PHOENIX-MDK 13

Figure 2.2: PMDK-Serial. Schematic of the Phoenix-MDK with RS232 level
shifter and 9 pin connector.

CHAPTER 2. THE PHOENIX-MDK 14

1. uart_init(baud) : 38400 is the maximum baudrate supported. You can
use any submultiple of that. We use 1 Stop Bit and the parity is Even.

2. uart_recv_byte() : Waits on the UART receiver for a character and re-
turns it

3. uart_send_byte(c) : Sends one character over the UART transmitter.

The program senddata.c reads the ADC and converts the binary data in to a
string using the sprintf function. This string is displayed on the LCD display
and send over the RS232 port also.

Example hello.c

#include "pmdk_adc.c"

#include "pmdk_uart.c"

#include "pmdk_lcd.c"

main()

{

uint16_t data;

char ss[10], *p;

lcd_init();

adc_enable();

uart_init(38400);

data = read_adc(0);

sprintf(ss,"%5d",data);

lcd_put_string(ss);

p = ss;

while (*p++)

uart_send_byte(*p);

}

The data send by the micro-controller is received by the Python program re-

ceive.py. The baud rate, stop bits and parity should be set the same at both
ends.

Example receive.py

import serial

ser = serial.Serial('/dev/ttyS0', 38400, stopbits=1)

count = 0

val = �

while(1):

while ser.inWaiting() == 0:

pass

x=ser.read()

if ord(x) == 0: #Print when end of string

print val

val = �

else:

val = val + x

CHAPTER 2. THE PHOENIX-MDK 15

The example programs given below implements a two way transmission of
data between the PC and ATmega16. Every character send from the PC is
diplayed on the terminal and also send back to the PC. The programs echo.c
and rs232echo.py are listed below.

Example echo.c

#include "pmdk_lcd.c"

#include "pmdk_uart.c"

int main(void)

{

uint8_t data;

lcd_init();

uart_init(38400);

for(;;)

{

data = uart_recv_byte();

lcd_put_char(data);

uart_send_byte(data);

}

}

Example rs232echo.py

import serial

fd = serial.Serial('/dev/ttyS0', 38400, stopbits=1, \

timeout = 1.0, parity=serial.PARITY_EVEN)

while 1:

c = raw_input('Enter a character : ')

fd.write(c)

print 'Receiced ', fd.read()

2.5 USB Communication to PC

Most of the PCs available today have USB ports and no RS232. The Atmega16
does not have any built-in USB interface. We need to use a USB to Serial
converter in-between to connect ATmega16 to the USB port of a PC. PMDK-
USB does it by using an ATmega8 micro-controller running the �rmware written
by Igor Cesko. The circuit schematic is shown below.

The communication software changes only on the PC side, instead of the
Python serial module, we need to use the Python USB module and send the
characters to the port. The program usbecho.py is listed below. The included
class �le is available on the website along with the other example programs.

import avr309, sys

con = avr309.avrusb()

if con.fd == None:

print 'AVR309 USB to Serial Adapter not found. Exiting'

CHAPTER 2. THE PHOENIX-MDK 16

Figure 2.3: PMDK-USB with LCD Display

sys.exit()

con.setbaud(38) # 38 for 38400 and 12 for 115200

while 1:

c = raw_input('Enter a character : ')

con.write(ord(c))

print chr(con.read_one())

CHAPTER 2. THE PHOENIX-MDK 17

Figure 2.4: PMDK-USB schematic. The communication to the PC USB port
is done through the USBtoSerial converter implemented using ATmega8.

